PUBLISHED PAPERS (REFEREED)
2024
- Mulder, Friel, Leifeld (2024). Bayesian testing of scientific expectations under exponential random graph models. Social Networks, 78, 40–53. org/10.1016/j.socnet.2023.11.004
- Vieira Generoso, Leenders, McFarland, & Mulder (2024). A Bayesian actor-oriented multilevel relational event model with hypothesis testing procedures. Behaviormetrika, 51, 37–74. org/10.1007/s41237-023-00203-4
2023
- Mulder (2023). Bayesian testing of linear versus nonlinear effects using Gaussian process priors. The American Statistician, 77(1), 1-11. org/10.1080/00031305.2022.2028675
- Meijerink, Back, Geukes, Leenders, & Mulder. (2023). Discovering trends of social interaction behavior over time: An introduction to relational event modeling. Behavior Research Methods, 55, 997–1023. org/10.3758/s13428-022-01821-8
- Shafiee-Kamalabad, Leenders & Mulder. What’s the point of change? Changepoint relational event modeling. Social Networks, 74, 166–181. doi.org/10.1016/j.socnet.2023.03.004
- Karimova, Leenders, Meijerink, & Mulder. Separating the Wheat from the Chaff: Bayesian regularization in Dynamic Social Networks. Social Networks, 74, 139–155. doi.org/10.1016/j.socnet.2023.02.006
- Arena, Leenders, & Mulder (2023). How fast do we forget our past social interactions? Understanding memory retention with parametric decays in relational event models. Network Science, 11(2), 267–294. org/10.1017/nws.2023.5
- Gravel, Valasik, Mulder, Leenders, Butts, Brantingham, & Tita (2023). Rivalries, reputation, retaliation, and repetition: Testing plausible mechanisms for the contagion of violence between street gangs using relational event models. Network Science, 11(2), 324-350. doi.org/10.1017/nws.2023.8
- Kavelaars, Mulder, Kaptein (2023). Bayesian multilevel multivariate logistic regression for superiority decision-making under observable treatment heterogeneity. BMC Medical Research Methodology. org/10.1186/s12874-023-02034-z
2022
- Mulder, Wagenmakers, & Marsman (2022). A generalization of the Savage-Dickey density ratio for equality and order constrained testing. The American Statistician, 76, 102-109. doi.org/10.1080/00031305.2020.1799861
- Mulder and Gelissen (2022). Bayes factor testing of equality and order constraints on measures of association in social research. Journal of Applied Statistics, 50 (2), 315–351. doi.org/10.1080/02664763.2021.1992360
- Mulder and Raftery (2022). BIC extensions for order-constrained model selection. Sociological Methods and Research, 51, 471-498. org/10.1177/00491241198824
- Mulder & Gu (2022). Bayesian Testing of Scientific Expectations under Multivariate Normal Linear Models. Multivariate Behavioral Research, 57 (5), 767–783. doi.org/10.1080/00273171.2021.1904809
- Gu, Hoijtink, & Mulder. (2022). Bayesian one-sided variable selection. Multivariate Behavioral Research, 57, 264-278.org/10.1080/00273171.2020.1813067
- Briganti, William, Mulder, & Linkowski. (2022). Bayesian network structure and predictability of autistic traits. Psychological Reports, 125, 344-357. doi.org/10.1177/00332941209781
- van Aert & Mulder (2022). Bayesian hypothesis testing and estimation under the marginalized random-effects meta-analysis model. Psychonomic Bulletin & Review, 29, 55–69. org/10.3758/s13423-021-01918-9
- Meijerink, Leenders, & Mulder (2022). Dynamic relational event modeling: Testing, exploring, and applying. PLOS ONE.org/10.1371/journal.pone.0272309
- Arena, Mulder, & Leenders (2022). A Bayesian Semi-Parametric Approach for Modeling Memory Decay in Dynamic Social Networks. Sociological Methods & Research. doi.org/10.1177/00491241221113875
- Heck et al. (2022). A review of applications of the Bayes factor in psychological research. Psychological Methods, 28(3), 558-579. org/10.1037/met0000454
2021
- Mulder, Williams, Gu, …, van Lissa (2021). BFpack: Flexible Bayes factor testing of scientific theories in R. Journal of Statistical Software, 100, 18, 1-63. org/10.18637/jss.v100.i18
- Williams, Mulder, Rouder, & Rast. (2021). Beneath the Surface: Unearthing Within-Person Variability and Mean Relations with Bayesian Mixed Models. Psychological Methods, 26, 1, 74-89. org/10.1037/met0000270
- van Lissa, Gu, Mulder, Rosseel, van Zundert, & Hoijtink (2021). Teacher’s Corner: Evaluating Informative Hypotheses Using the Bayes Factor in Structural Equation Models. Structural Equation Modeling, 28, 2, 292-301.org/10.1080/10705511.2020.1745644
- Böing-Messing, F. & Mulder, J. Bayes factors for testing order constrained hypotheses on variances of dependent observations. The American Statistician, 75, 152-161. doi.org/10.1080/00031305.2020.1715257
2020
- Mulder, J., Berger, J.O., Peña, V., & Bayarri, M.J. (2020). On the prevalence of information inconsistency in normal linear models. TEST, 30, 103-132. org/10.1007/s11749-020-00704-4
- Williams, D. W. and Mulder, J. (2020). Bayesian Hypothesis Testing for Gaussian Graphical Models: Conditional Independence and Order Constraints. Journal of Mathematical Psychology, 22. org/10.1016/j.jmp.2020.102441
- Williams, D. W., Rast, P., Pericchi, L. R, and Mulder, J. (2020). Comparing Gaussian Graphical Models with the Posterior Predictive Distribution and Bayesian Model Selection. Psychological Methods, 25(5), 653–672.org/10.1037/met0000254
- Kavelaars, Mulder, & Kaptein (2020). Bayesian analysis of clinical trial designs with multiple binary endpoints. Statistical Methods in Medical Research, 29(11), 3265-3277. doi.org/10.1177/0962280220922256
- Williams & Mulder (2020). BGGM: A R Package for Bayesian Gaussian Graphical Models. Journal of Open Source Software. org/10.21105/joss.02111
- Dittrich, D., Leenders, R.Th.A.J., & Mulder, J. (2020). Network autocorrelation modeling: Bayesian techniques for estimating and testing multiple network autocorrelations. Sociological Methodology, 50(1), 168-214. org/10.1177/0081175020913899
2019
- Mulder, J. and Leenders, R.Th.A.J. (2019). Modeling the evolution of interaction behavior in social networks: a dynamic relational event approach for real-time analysis. Chaos, Solitons & Fractals, 119, 73-85.org/10.1016/j.chaos.2018.11.027
- Mulder, J. and Olsson-Collentine, A. (2019). Simple Bayesian testing of scientific expectations in linear regression models. Behavior Research Methods, 51, 1117-1130. doi.org/10.3758/s13428-018-01196-9
- Van Erp, S., Oberski, D., & Mulder, J. (2019). Shrinkage priors for Bayesian penalized regression. Journal of Mathematical Psychology, 89, 31-50. doi.org/10.1016/j.jmp.2018.12.004
- Gu, X., Rosseel, Y., Mulder, J., & Hoijtink, H. (2019). Bain: A program for the evaluation of inequality constrained hypotheses using Bayes factors in structural equation models. Journal of Statistical Computation and Simulation, 89(8), 1526-1553. doi.org/10.1080/00949655.2019.1590574
- Meens, E.E.M., Bakx, A., Mulder, J., Denissen, J.J.A. (2019). The development and validation of an Interest and Skill inventory on Educational Choices. European Journal of Psychological Assessment. org/10.1027/1015-5759/a000546
- Dittrich, D., Leenders, R., & Mulder, J. (2019). Network Autocorrelation Modeling: A Bayes Factor Approach for Testing (Multiple) Precise and Interval Hypotheses. Sociological Methods & Research, 48, 642-676.org/10.1177/0049124117729712
- Hoijtink, H., Gu, X., & Mulder, J. (2019). Bayesian Evaluation of Informative Hypotheses for Multiple Populations. British Journal of Mathematical and Statistical Psychology, 72(2), 219-243. org/10.1111/bmsp.12145
- Hoijtink, H., Gu, X., Mulder, J., and Rosseel, Y. (2019). Computing Bayes factors from data with missing values. Psychological Methods, 24(2), 253-doi.org/10.1037/met0000187
- Hoijtink, H., Mulder, J., van Lissa, C.J., & Gu, X. (2019). A tutorial on testing hypotheses using the Bayes factor. Psychological Methods, 24(5), 539- doi.org/10.1037/met0000201
2018
- Mulder, J. and Pericchi, L.R. (2018). The matrix-F prior for estimating and testing covariance matrices. Bayesian Analysis, 13, 1189-1210. org/10.1214/17-BA1092
- Mulder, J. and Fox, J.-P. (2019). Bayes factor testing of multiple intraclass correlation coefficients. Bayesian Analysis, 14, 521-552. org/10.1214/18-BA1115
- Van Erp, S., Mulder, J., & Oberski, D. L. (2018). Prior sensitivity analysis in default Bayesian structural equation modeling. Psychological Methods, 23, 363-388. doi.org/10.1037/met0000162
- Böing-Messing, F. & Mulder, J. (2018). Automatic Bayes factors for testing equality and inequality constrained hypotheses on variances. Psychometrika, 83, 586-617. doi.org/10.1007/s11336-018-9615-z
- Gu, X., Mulder, J. & Hoijtink, H. (2018) Approximated adjusted fractional Bayes factors: A general method for testing informative hypotheses. British Journal of Mathematical and Statistical Psychology, 71(2), 229-261. org/10.1111/bmsp.12110
- Flore, P. C., Mulder, J., and Wicherts, J. (2018). The influence of gender stereotype threat on mathematics test scores of Dutch high school students: A registered report. Comprehensive Results in Social Psychology, 3(2), 140–174. doi.org/10.1080/23743603.2018.1559647
2017
- J.-P., Mulder, J., & Sinharay, S. (2017). Bayes Factor Covariance Testing in Item Response Models.Psychometrika, 82, 976-1006. doi.org/10.1007/s11336-017-9577-6
- Dittrich, D., Leenders, R., & Mulder, J. (2017). Bayesian estimation of the network autocorrelation model. Social Networks, 48, 213-246. org/10.1016/j.socnet.2016.09.002
- Böing-Messing, F., Van Assen, M., Hoijtink, H., Hoffman, A., & Mulder, J. (2017). Bayesian evaluation of equality and inequality constrained hypotheses on variances. Psychological Methods, 22, 262-287. org/10.1037/met0000116
- De Jong, J., Rigotti, T., & Mulder, J. (2017). One after the other: Effects of sequence patterns of breaches and overfulfilled obligations. European Journal of Work and Organizational Psychology, 26, 337-355.org/10.1080/1359432X.2017.1287074
- Kollenburg, G., Mulder, J., & Vermunt, J.K. (2017). Posterior calibration of posterior predictive p-values. Psychological Methods, 22, 382-396. org/10.1037/met0000142
2016
- Mulder J. (2016). Bayes Factors for Testing Order-Constrained Hypotheses on Correlations. Journal of Mathematical Psychology, 72, 104-115. org/10.1016/j.jmp.2014.09.004
- Mulder, J. & Wagenmakers, E.-J. (2016). Editors’ Introduction to the Special Issue “Bayes Factors for Testing Hypotheses in Psychological Research: Practical Relevance and New Developments”. Journal of Mathematical Psychology, 72, 1-5. doi.org/10.1016/j.jmp.2016.01.002
- Fox, J.-P., Marsman, M., Mulder, J., & Verhagen, J. (2016). Complex latent variable modeling in educational assessment. Communications in Statistics, 45, 1499-1510. doi.org/10.1080/03610918.2014.939518
- Böing-Messing, F. & Mulder J. (2016). Automatic Bayes Factors for Testing Variances of Two Independent Normal Distributions. Journal of Mathematical Psychology, 72, 158-170. doi.org/10.1016/j.jmp.2015.08.001
- Gu, X., Hoijtink, H., & Mulder, J. (2016). Error probabilities in default Bayesian hypothesis testing. Journal of Mathematical Psychology, 72, 130-143. org/10.1016/j.jmp.2015.09.001
2015
- Braeken, J., Mulder, J., & Wood, S. (2015). Relative effects at work: Bayes factors for order hypotheses. Journal of Management, 41, 544-573. org/10.1177/0149206314525206
- Van Kollenburg, G., Mulder, J., & Vermunt, J. K. (2015). Assessing model fit when asymptotics do not hold. Methodology, 11, 65-79. org/10.1027/1614-2241/a00009
2014
- Mulder, J. (2014). Bayes factors for testing inequality constrained hypotheses: Issues with prior specification. British Journal of Mathematical and Statistical Psychology, 67, 153-171. doi.org/10.1111/bmsp.12013
- Mulder, J. (2014). Prior adjusted default Bayes factors for testing (in)equality constrained hypotheses. Computational Statistics and Data Analysis, 71, 448-463. doi.org/10.1016/j.csda.2013.07.017
- Gu, X., Mulder, J., Dekovic, M., & Hoijtink, H. (2014). Bayesian evaluation of inequality constrained hypotheses. Psychological Methods, 19, 511-527. doi.org/10.1037/met0000017
2013
- Mulder, J. & Fox, J.-P. (2013). Bayesian tests for variance components in a compound symmetry covariance structure. Statistics and Computing, 23, 109-122. doi.org/ 10.1007/s11222-011-9295-3
2012
- Mulder, J., Hoijtink, H., & de Leeuw, C. (2012). BIEMS: A Fortran 90 program for calculating Bayes factors for inequality and equality constrained models. Journal of Statistical Software, 46(2). org/10.18637/jss.v046.i02
- Kluytmans, A., Van de Schoot, R., Mulder, J., & Hoijtink, H. (2012). Illustrating Bayesian evaluation of informative hypotheses for regression models. Frontiers in Psychology, 3(2). doi.org/10.3389/fpsyg.2012.00002
2011
- Van de Schoot, R., Mulder, J., Hoijtink, H., van Aken, M. A. G., Semon Dubas, J., Orobio de Castro, B., Meeuw, W., & Romeijn, J. -W. (2011). An introduction to Bayesian model selection for evaluating informative hypotheses. European Journal of Developmental Psychology, 8(6), 713-729. org/10.1080/17405629.2011.621799
- Van de Schoot, R., Hoijtink, H., Mulder, J., Aken, M. V., de Castro, B. O., Meeus, W., & Romeijn, J.-W (2011). Evaluating expectations about negative emotional states of aggressive boys using Bayesian model selection. Developmental Psychology, 47 (1), 203-212. doi.org/10.1037/a0020957
2010
- Mulder, J., Hoijtink, H., & Klugkist, (2010). Equality and inequality constrained multivariate linear models: Objective model selection using constrained posterior priors. Journal of Statistical Planning and Inference, 140, 887-906. doi.org/10.1016/j.jspi.2009.09.022
2009
- Mulder, J. & van der Linden, W. J. (2009). Multidimensional adaptive testing with optimal design criterion for item selection. Psychometrika, 74, 273-296. doi.org/10.1007/S11336-008-9097-5
- Mulder, J., Klugkist, I., Meeus, W., van de Schoot, A., Selfhout, M., & Hoijtink,H. (2009). Bayesian model selection of informative hypotheses for repeated measurements. Journal of Mathematical Psychology, 53, 530-546.org/10.1016/j.jmp.2009.09.003
- Kammers, M. P. M., Mulder, J., De Vignemont, F., & Dijkerman, H. C. (2009). The weight of representing the body: A dynamic approach to investigating multiple body representations in healthy individuals. Experimental Brain Research, 204, 333-342. doi.org/10.1007/s00221-009-2009-9
- Almond, R. G., Mulder, J., Hemat, L. A., & Yan, D. (2009). Bayesian network models for local dependence among observable outcome variables. Journal of Educational and Behavioral Statistics, 34, 491-521.org/10.3102/1076998609332751
BOOKS, OR CONTRIBUTIONS TO BOOKS
- Mulder, J. (2016). Bayesian Testing of Constrained Hypotheses. In J. Robertson & M.C. Kaptein (Eds.), Modern Statistical Methods for HCI. Springer-Verlag. link
- Mulder, J. (2010). Bayesian Model Selection for Constrained Multivariate Normal Linear Models. PhD thesis, Utrecht University. link
- Mulder, J. & van der Linden, W. J. (2009).Multidimensional adaptive testing with Kullback-Leibler information item selection. In W. J. van der Linden & C. A. W. Glas (Eds.), Elements of Adaptive Testing (pp. 79-104). New York: Springer.link
- Klugkist, & Mulder, J. (2008). Bayesian estimation for inequality constrained analysis of variance. In: H. Hoijtink, I. Klugkist, and P. A. Boelen. (Eds.), Bayesian Evaluation of Informative Hypotheses (pp. 27-52). New York: Springer. link
- Schouten, G., Arena, G., van Leeuwen, F.C.A., Heck, P., Mulder, J., Aalbers, R., Leenders, R.Th.A.J., and Böing-Messing, F (2022). Data science in action. In Data Science for Entrepreneurship: Principles and Methods for Data Engineering, Analytics, Entrepreneurship, and the Society. (Liebregts, van den Heuvel, van de Born, Eds.). link