BAYESIAN TESTING OF EQUALITY AND ORDER-CONSTRAINED HYPOTHESES:

APPLICATIONS, METHODOLOGY & SOFTWARE

JORIS MULDER

Department of Methodology and Statistics, Tilburg University

THE DEPARTMENT OF SOCIOLOGY, UC IRVINE 10/27/2017

OVERVIEW

- Applications of equality and order constrained hypothesis testing
 - Linear regression in organizational psychology
 - Multilevel modeling in educational measurement
 - Relational event modeling of dynamic social networks
- Classical approaches
- Bayes factors
 - Basics, properties, behavior
- Software for Bayes factor testing of constrained hypotheses
- Applications revisited

JOINT WORK WITH...

- Herbert Hoijtink (Utrecht University);
- Roger Leenders (Tilburg University);
- Jean-Paul Fox (University of Twente);
- Eric-Jan Wagenmakers (University of Amsterdam);
- Irene Klugkist (Utrecht University);
- Gu Xin (University of Liverpool);
- Dino Dittrich (Tilburg University);
- Florian Boing-Messing (Tilburg University);
- Johan Braeken (University of Oslo);
- Stephen Wood (University of Leicester).

TESTING COMPOSITE HYPOTHESES WITH EQUALITY AND ORDER CONSTRAINTS

- The magnitude of statistical parameters are **not absolute** but **relative**.
- Effects are not only relative to each other, but also to the area of the science, and to the research method that is employed (Cohen, 1988).

TESTING COMPOSITE HYPOTHESES WITH EQUALITY AND ORDER CONSTRAINTS

- The magnitude of statistical parameters are **not absolute** but **relative**.
- Effects are not only relative to each other, but also to the area of the science, and to the research method that is employed (Cohen, 1988).
- For example, a (standardized) effect of .3 may be large when regressing political left-right placement on educational level, but small when regressing quality-of-life on treatment dosage.

TESTING COMPOSITE HYPOTHESES WITH EQUALITY AND ORDER CONSTRAINTS

- The magnitude of statistical parameters are **not absolute** but **relative**.
- Effects are not only relative to each other, but also to the area of the science, and to the research method that is employed (Cohen, 1988).
- For example, a (standardized) effect of .3 may be large when regressing political left-right placement on educational level, but small when regressing quality-of-life on treatment dosage.
- Therefore test composite hypotheses with equality (=) and order constraints (<, >) on the effects of interest.

- Workplace aggression from inside and outside the organization.
- Employees at hospitals indicated whether they experienced any form of aggression by managers, coworkers, and/or visitors.
- The degree of **anxiety**, **depression**, and **job dissatisfaction** was measured for each respondent which served as dependent variables.

- Relative effects of independent variables on a dependent variable are generally modeled using regression models.
- An example of workplace aggression on workers' well-being.

Depression =
$$\beta_0$$
 + β_V x Aggression(V) + β_C x Aggression(C) + β_M x Aggression(M) + error

- with β_V = Relative effect of aggression from **visitors** on depression.
 - $\beta_{\rm C}$ = Relative effect of aggression from **colleagues** on depression.
 - $\beta_{\rm M}$ = Relative effect of aggression from **managers** on depression.

- Hypotheses are often formulated with order constraints.
 - We expected a **positive effect** of aggression from visitors on depression, i.e., $\beta_V > 0$.
 - We expected a **positive effect** of aggression from coworkers on depression, i.e., $\beta_c > 0$.
 - We expected a **positive effect** of aggression from managers on depression, i.e., $\beta_M > 0$.
 - Based on the **hierarchy in the organization** we expected that the relative effect of aggression on depression is largest for managers, followed by coworkers, followed by visitors: $\beta_M > \beta_C > \beta_V$.
- See Braeken et al. (2014).

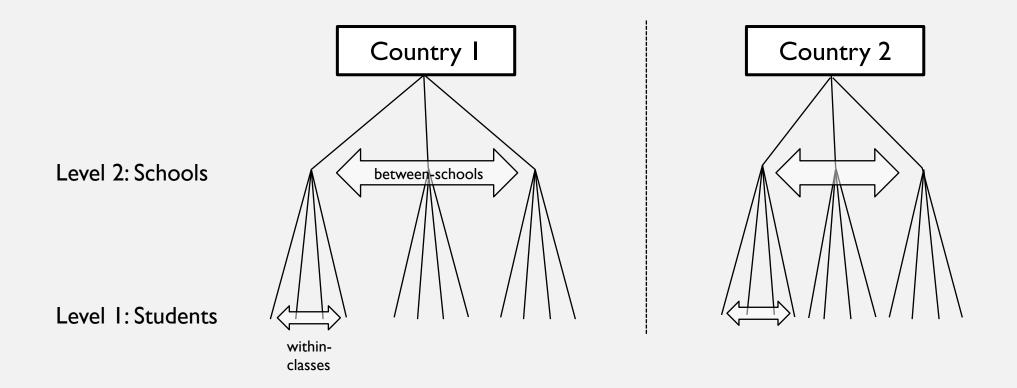
- We can combine these order constraints into a single 'order hypothesis'.
 - "All sources of workplace aggression have a positive effect on depression and the effect is largest for managers, followed by coworkers, followed by visitors":

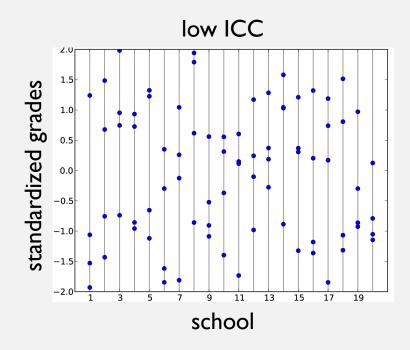
Power differential hypothesis: H_1 : $\beta_M > \beta_C > \beta_V > 0$

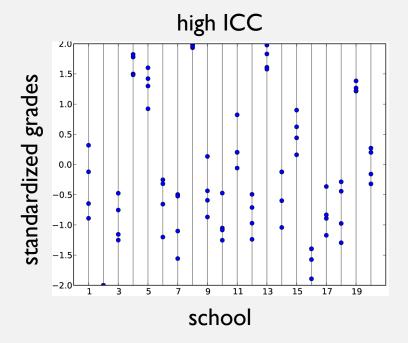
versus

Complement hypothesis: H_2 : "not H_1 ".

- The Trends in International Mathematics and Science Study (**TIMSS**) measures the performances of fourth and eight graders in more than 50 participating countries around the world (<u>www.iea.nl/timss</u>).
- Interest is not only in testing the average grades across countries, but also in testing the variability of school performance within countries.
- The relative variability between schools is quantified by **country specific intraclass correlations**.







- Focus on The Netherlands, Croatia, Germany, and Denmark.
- Null hypothesis: Equal intraclass correlations over countries:

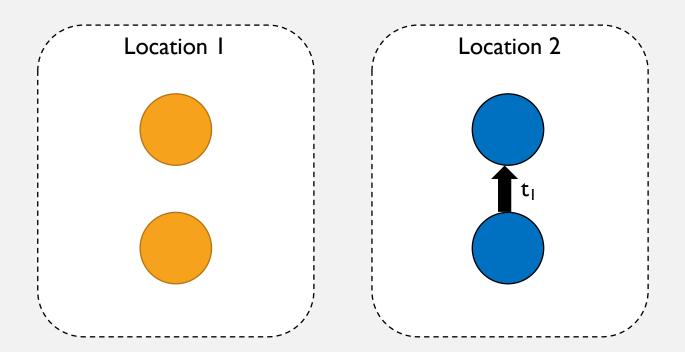
•
$$H_0$$
: $\rho_{NL} = \rho_{CR} = \rho_{GER} = \rho_{DEN}$.

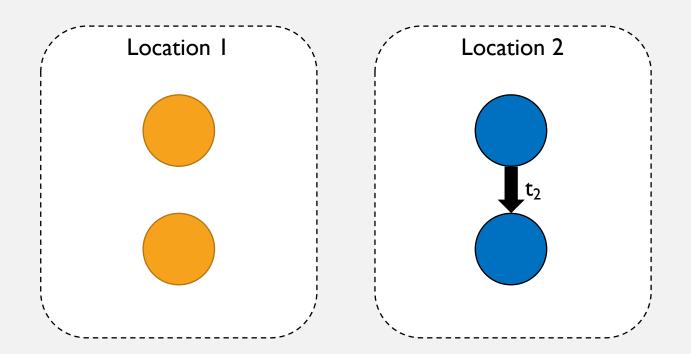
 Order hypothesis: Previous research suggest that between schools variability is largest for Danish schools, followed by German schools, followed by Croatian schools, followed by Dutch Schools:

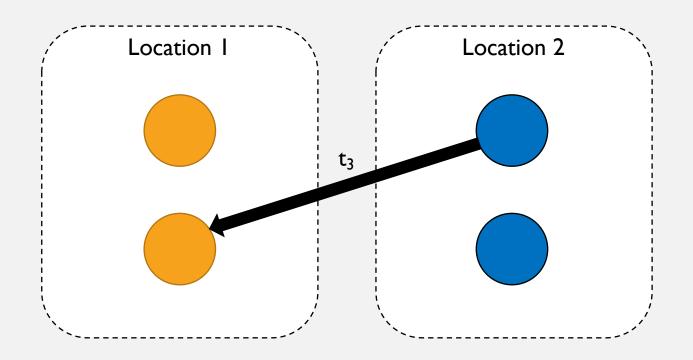
•
$$H_1$$
: $\rho_{NL} < \rho_{CR} < \rho_{GER} < \rho_{DEN}$.

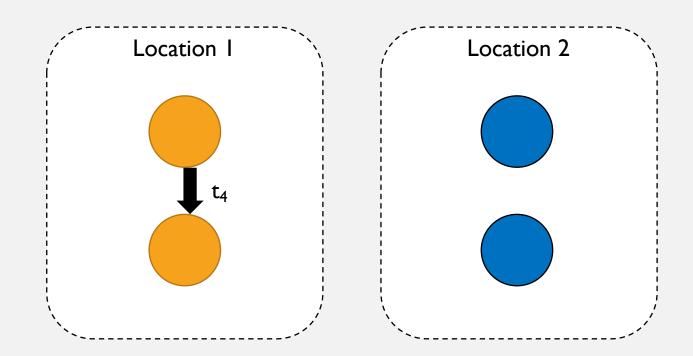
- Complement hypothesis:
 - H_2 : neither H_0 , nor H_1 .

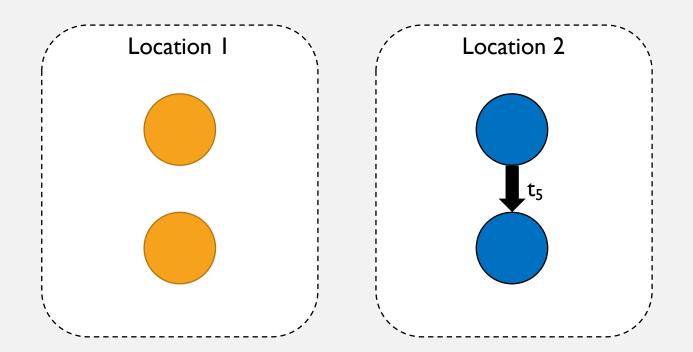
- A relational event history data was collected of email messages between colleagues containing information about innovative ideas in a large consultancy firm.
- The data contain information about who send a message to whom and when in the year 2010.
- Interest was in the **relative importance** of drivers of these social interactions between colleagues and how this changes over time.
- The relational event model of Butts (2008) was employed.



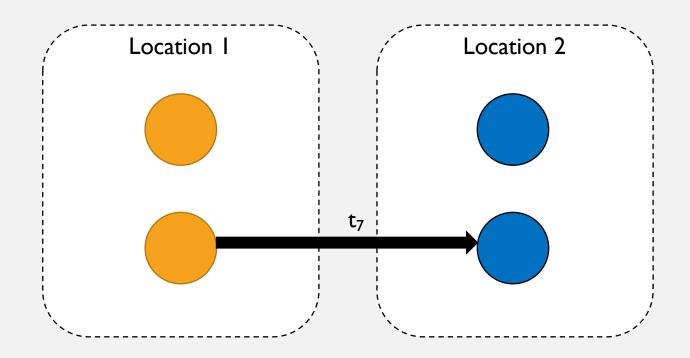


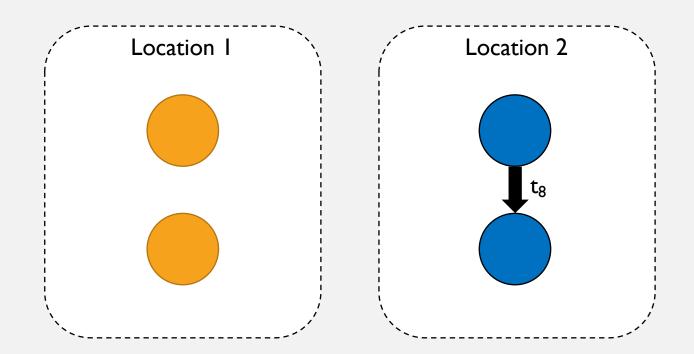


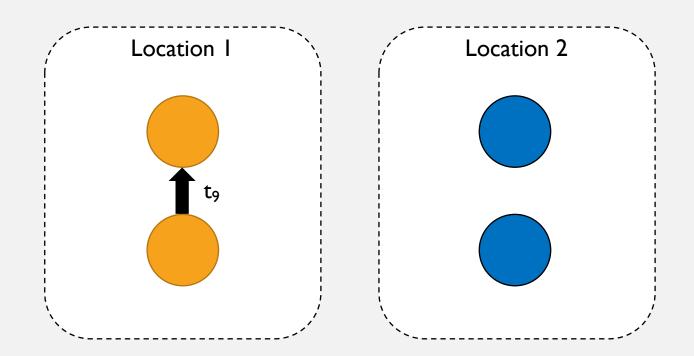


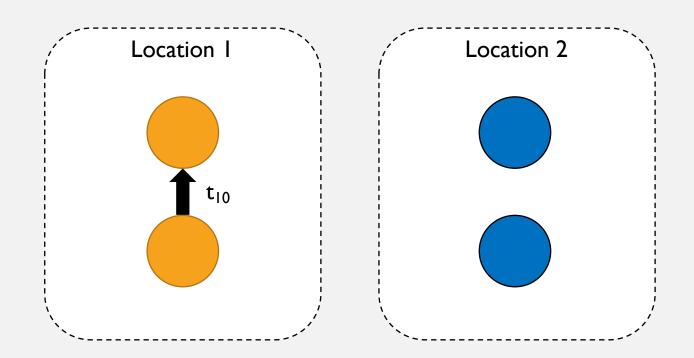


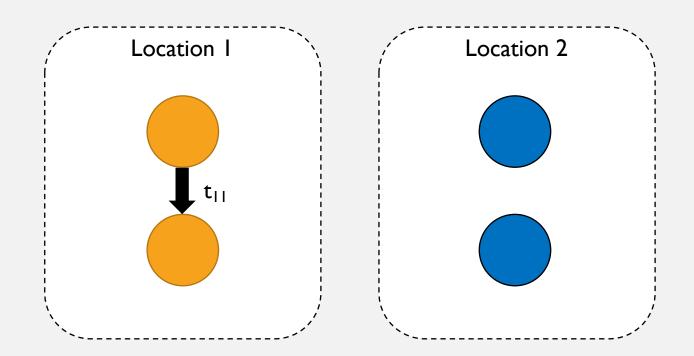












- It is often suggested that information-sharing occurs sooner and at a higher rate among colleagues who they feel related to this is often attributed to identity.
- Thus, having the same position may have a positive and strong effect on information sharing, while working in the same building, or being of the same gender may also have a positive effect but to a lesser extent.

•
$$H_1: \beta_{position} > \beta_{building} > \beta_{gender} > 0$$

Alternatively, only being in the same location may have an effect.

•
$$H_2$$
: $\beta_{position} > \beta_{building} = \beta_{gender} = 0$

• H_3 : neither H_1 , nor H_2 .

WHY TEST ORDER HYPOTHESES?

- Why test order hypotheses instead of the classical null and alternative hypotheses?
 - We test the magnitude of the effects relative to the scientific field and study.
 - We get a direct answer whether our theory or expectations (with order) constraints) are supported by the data.
 - We test with more statistical power.
 - Compare the two-tailed test (" $\beta \neq 0$ ") with the one-tailed test (" $\beta > 0$ ").
 - More power implies that we are more likely to draw the correct conclusions.

- Significance tests using p-value...
 - ...are only available for testing **specific types of order hypotheses** for 'standard' models (Silvapulle & Sen, 2004);

$$H_0$$
: $\beta_1 = \beta_2 = \beta_3$ against H_1 : $\beta_1 > \beta_2 > \beta_3$ YES

$$H_0: \beta_1 > \beta_2 > \beta_3$$
 against $H_1: \beta_1, \beta_2, \beta_3$ YES

$$H_0$$
: $\beta_1 = \beta_2 > \beta_3$ against H_1 : β_1 , β_2 , β_3

$$H_0$$
: $\beta_1 > \beta_2 > \beta_3$ against H_1 : $\beta_1 < \beta_2 < \beta_3$ NO

- Significance tests using p-value...
 - ...are only available for testing **specific types of order hypotheses** for 'standard' models (Silvapulle & Sen, 2004);
 - ...on pairs of parameters (**posthoc testing**) can be **problematic** (Braeken et al., 2014), e.g., conflicting results;

$$\beta_1 \neq 0$$
 (sign.), $\beta_2 = 0$ (not sign.), $\beta_1 = \beta_2$ (not sign.).

- Significance tests using p-value...
 - ...are only available for testing **specific types of order hypotheses** for 'standard' models (Silvapulle & Sen, 2004);
 - ...on pairs of parameters (**posthoc testing**) can be **problematic** (Braeken et al., 2014), e.g., conflicting results;
 - ...are inconsistent when the null is true;

$$H_0$$
: $\beta_1 = \beta_2 = \beta_3$ against H_1 : $\beta_1 > \beta_2 > \beta_3$

For extremely large samples there is still a probability of α to incorrectly reject a true H_0 .

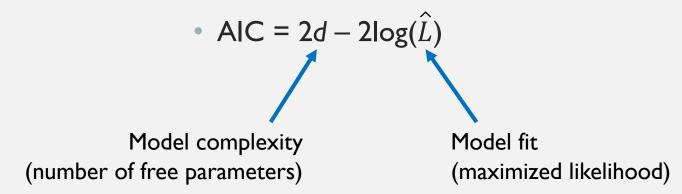
- Significance tests using p-value...
 - ...are only available for testing **specific types of order hypotheses** for 'standard' models (Silvapulle & Sen, 2004);
 - ...on pairs of parameters (**posthoc testing**) can be **problematic** (Braeken et al., 2014), e.g., conflicting results;
 - ...are **inconsistent** when the null is true;
 - ...are not designed for simultaneously testing multiple (more than 2) hypotheses.

 $H_0: \beta_1 > \beta_2 > \beta_3$ vs $H_1: \beta_1 < \beta_2 < \beta_3$ vs $H_2:$ neither $H_0,$ nor H_1 .

• Significance tests using p-value...

- ...are only available for testing **specific types of order hypotheses** for 'standard' models (Silvapulle & Sen, 2004);
- ...on pairs of parameters (**posthoc testing**) can be **problematic** (Braeken et al., 2014), e.g., conflicting results;
- ...are **inconsistent** when the null is true;
- ...are not designed for simultaneously testing multiple (more than 2) hypotheses.
- ...depend on the **sampling plan**.

• (Classical) information criteria, such as the AIC or BIC, are not designed for testing models with order hypotheses on the parameters (Mulder et al., 2009).



• How many free parameters d does H_1 : $\beta_M > \beta_C > \beta_V > 0$ have?

BAYES FACTORS

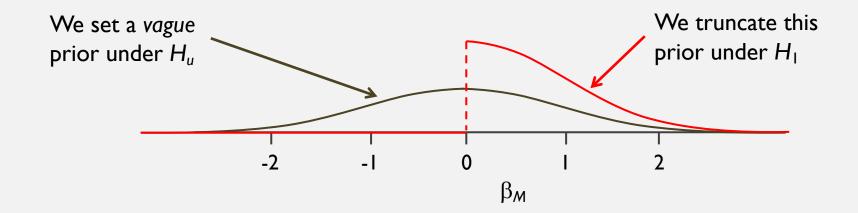
• The Bayes factor (Jeffreys, 1961) is defined as the ratio of the marginal likelihoods

$$BF(H_1,H_2) = \frac{\text{marginal likelihood}(H_1)}{\text{marginal likelihood}(H_2)}$$

- The marginal likelihood of H_1 quantifies how plausible the data were generated under hypothesis H_1 .
- For example, a Bayes factor of $BF(H_1,H_2) = 10$ implies that it was 10 times more plausible that the data were generated under H_1 than under H_2 .
- Marginal likelihoods can be difficult to compute.
- Bayes factors can be sensitive to the prior.

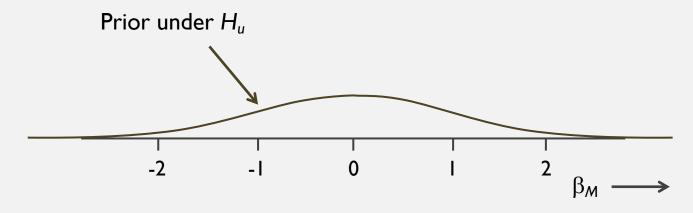
BAYES FACTORS FOR TESTING A ONE-SIDED HYPOTHESIS

- When testing order hypotheses we can use the encompassing prior approach to set priors under the hypotheses (e.g., Klugkist et al., 2005).
- Consider H_1 : $\beta_M > 0$ versus H_u : β_M unconstrained,



• The Bayes factor of an order hypothesis H_1 against the unconstrained hypothesis H_u is then equal to

$$BF(H_1,H_u) = \frac{\text{posterior probability that the constraints of } H_1 \text{ hold under } H_u}{\text{prior probability that the constraints of } H_1 \text{ hold under } H_u}$$
$$= \frac{\text{Relative fit of } H_1}{\text{Relative complexity of } H_1}$$



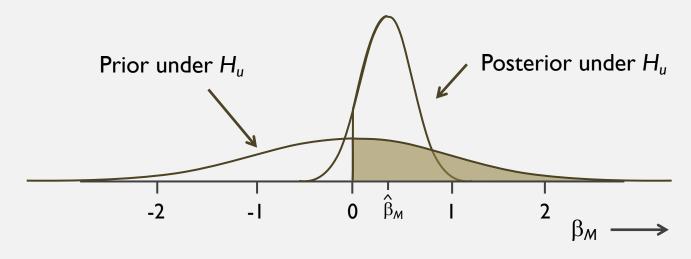
• BF(
$$H_1, H_u$$
) =

posterior probability that $\beta_M > 0$

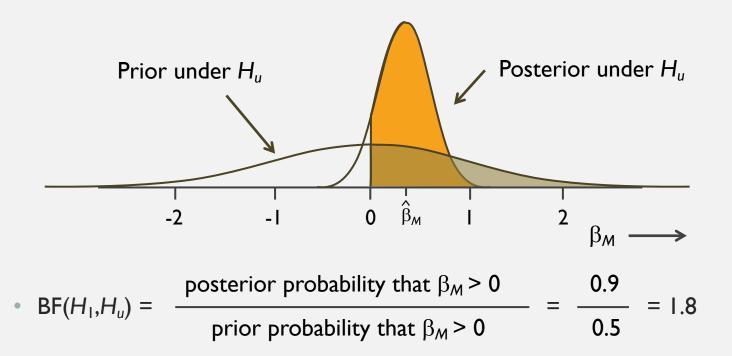
prior probability that $\beta_M > 0$

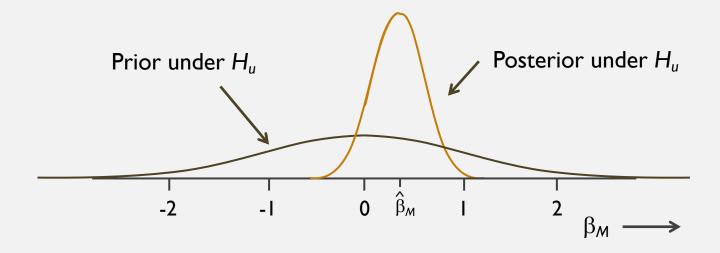


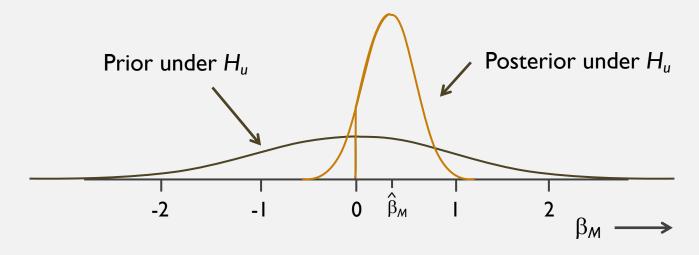
• BF(
$$H_1$$
, H_u) = $\frac{\text{posterior probability that } \beta_M > 0}{\text{prior probability that } \beta_M > 0} = \frac{0.5}{0.5}$



• BF(
$$H_1, H_u$$
) = $\frac{\text{posterior probability that } \beta_M > 0}{\text{prior probability that } \beta_M > 0} = \frac{0.5}{0.5}$



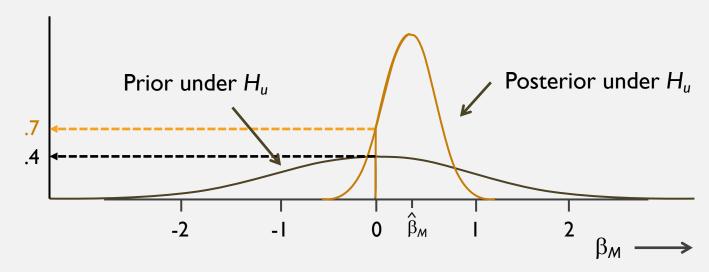




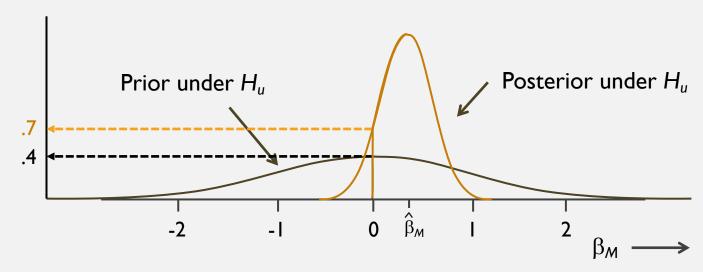
• BF(
$$H_0, H_1$$
) =

posterior density at $\beta_M = 0$

prior density at $\beta_M = 0$

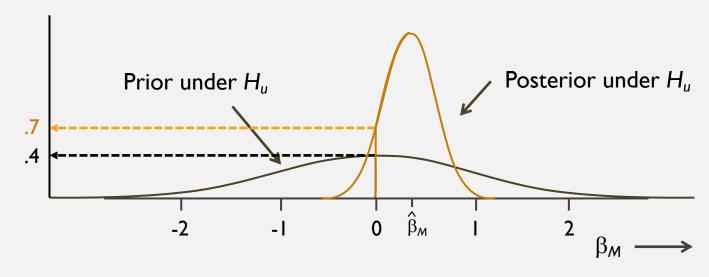


• BF(
$$H_0,H_1$$
) = posterior density at $\beta_M=0$
prior density at $\beta_M=0$



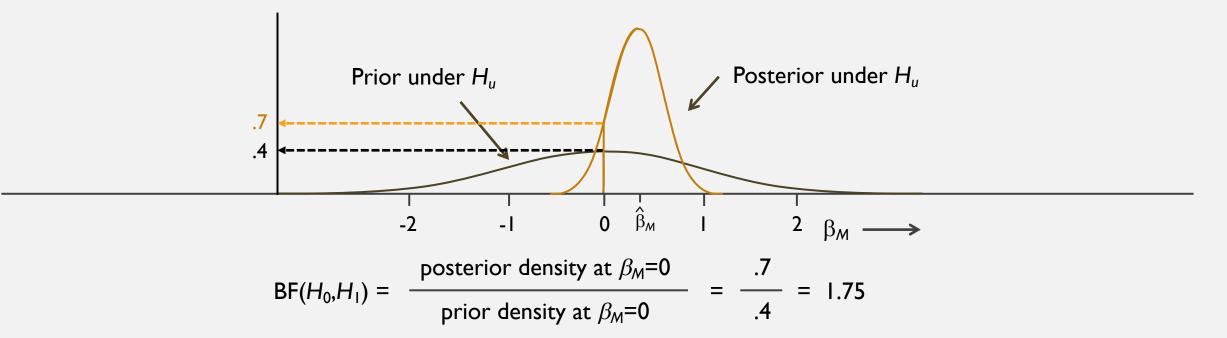
• BF(
$$H_0, H_1$$
) = $\frac{\text{posterior density at } \beta_M = 0}{\text{prior density at } \beta_M = 0} = \frac{.7}{.4} = 1.75$

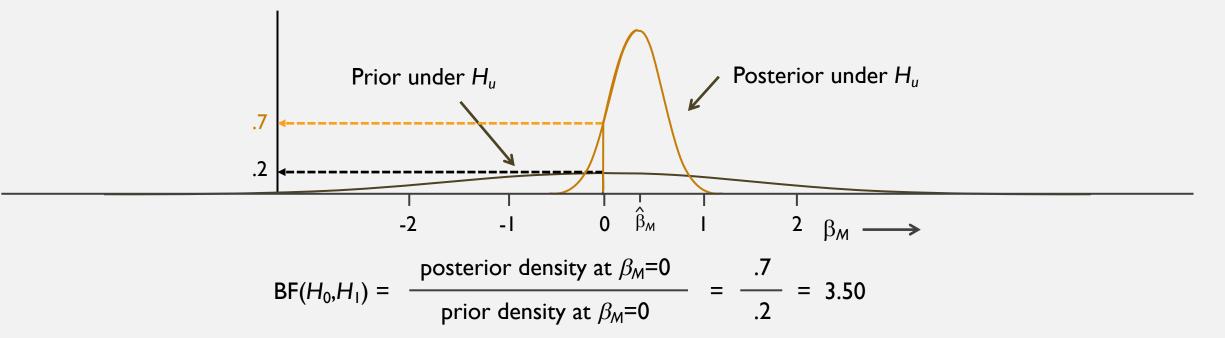
• For example, H_0 : $\beta_M = 0$ versus H_1 : $\beta_M \neq 0$,

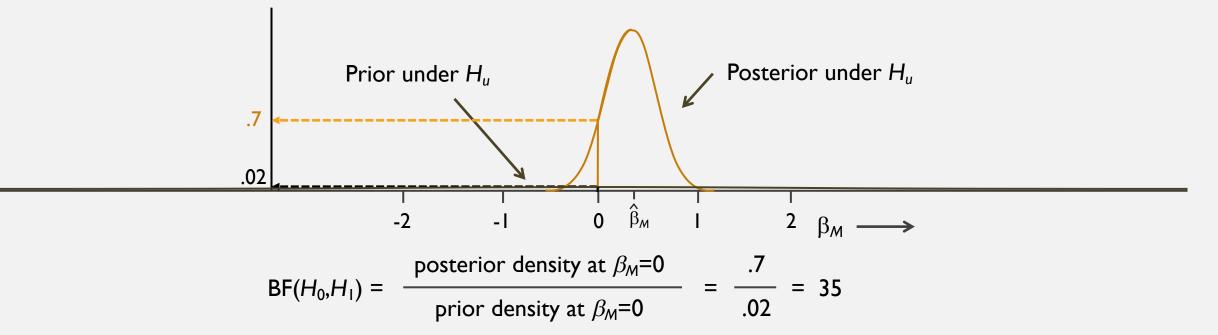


$$BF(H_0,H_1) = \frac{\text{posterior density at } \beta_M = 0}{\text{prior density at } \beta_M = 0} = \frac{.7}{.4} = 1.75$$

The Savage-Dickey density ratio of the Bayes factor holds for a specific choice of the priors.



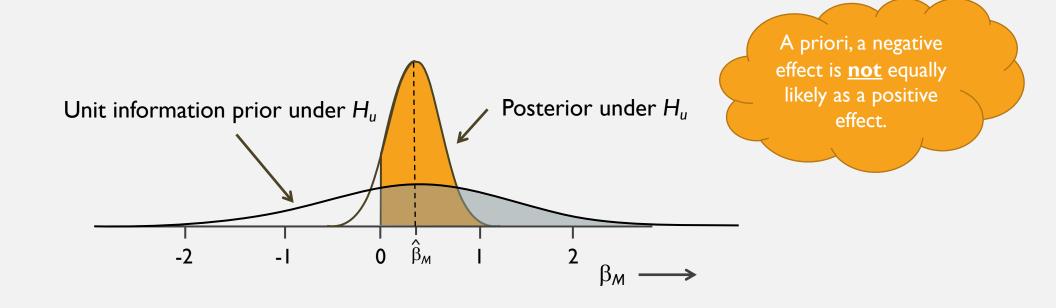




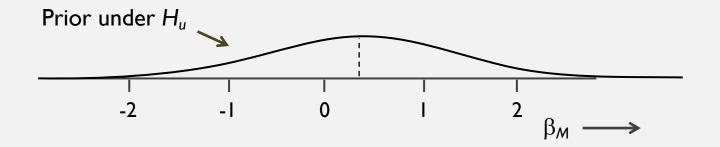
- **Bartlett's paradox**: The evidence for a null hypothesis H_0 : $\beta_M = 0$ against H_1 : $\beta_M \neq 0$ can be made arbitrarily large by setting the prior variance large enough.
- If clear prior information is absent use a default prior that contains the information of a minimal experiment.

- **Bartlett's paradox**: The evidence for a null hypothesis H_0 : $\beta_M = 0$ against H_1 : $\beta_M \neq 0$ can be made arbitrarily large by setting the prior variance large enough.
- If clear prior information is absent use a default prior that contains the information of a minimal experiment.
- The **BIC** is a Bayes factor approximation based on a **unit information prior** (Schwarz, 1978; Raftery, 1995).

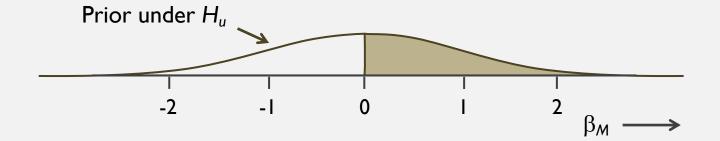
• The unit information prior as centered at the ML estimate.



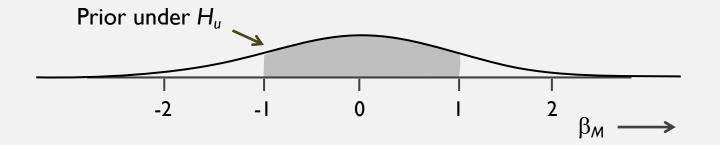
• A default prior should be centered at the null value. Then



- A default prior should be centered at the null value. Then
 - negative effects are equally likely as positive effects;

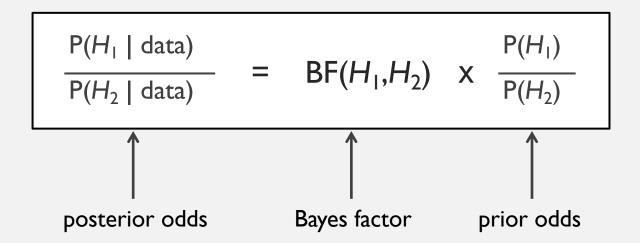


- A default prior should be centered at the null value. Then
 - negative effects are equally likely as positive effects;
 - small effects are more likely a priori than large effects.



POSTERIOR ODDS OF HYPOTHESES

 The Bayes factors can be used to update the prior odds of two hypotheses to obtain the posterior odds between the two hypotheses.



BAYES FACTORS FOR TESTING ORDER HYPOTHESES

- Example of multiple hypothesis test
 - H_1 : $\beta_M > 0$, $\beta_C > 0$ (both effects are positive)
 - H_2 : $\beta_M > \beta_C$ (effect of managers is larger than effect of coworkers)
 - H_3 : $\beta_M > \beta_C > 0$ (combination of H_1 and H_2)
 - H_u : β_M , β_C (no specific expectation on the effects)

BAYES FACTORS FOR TESTING ORDER HYPOTHESES

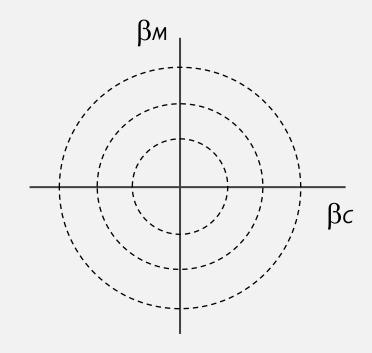
Example of multiple hypothesis test

•
$$H_1: \beta_M > 0, \beta_C > 0$$

•
$$H_2$$
: $\beta_M > \beta_C$

•
$$H_3$$
: $\beta_M > \beta_C > 0$

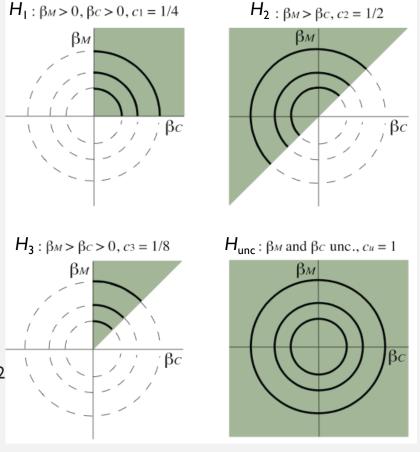
•
$$H_u$$
: β_M , β_C



A vague prior for βc and βM under H_u .

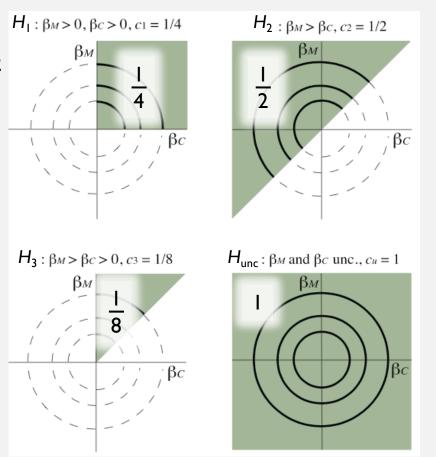
RELATIVE COMPLEXITY OF ORDER HYPOTHESES

- Example of multiple hypothesis test
 - $H_1: \beta_M > 0, \beta_C > 0$
 - H_2 : $\beta_M > \beta_C$
 - H_3 : $\beta_M > \beta_C > 0$
 - H_u : β_M and β_C
- So H_u is most complex (largest parameter space), followed by H₂
 H₁, and H₃ (smallest parameter space).



RELATIVE COMPLEXITY OF ORDER HYPOTHESES

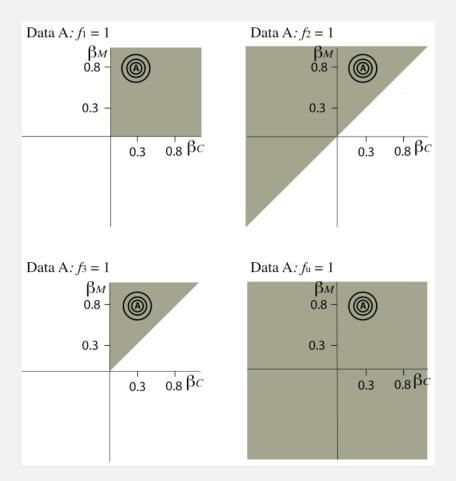
- Example of multiple hypothesis test
 - $H_1: \beta_M > 0, \beta_C > 0$
 - H_2 : $\beta_M > \beta_C$
 - H_3 : $\beta_M > \beta_C > 0$
 - H_u : β_M and β_C
- **Relative complexity** (Mulder et al., 2010).



RELATIVE COMPLEXITY OF ORDER HYPOTHESES

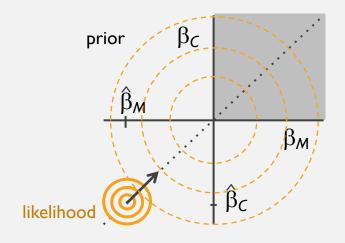
Output for hypothetical Data A.

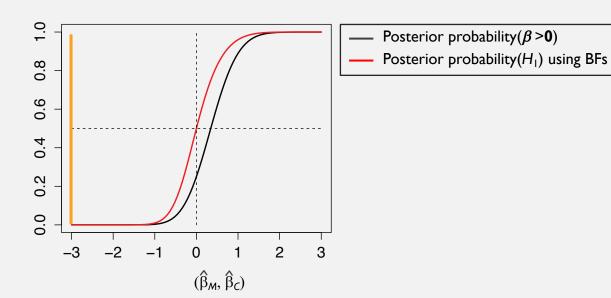
	Data A			
	C_t	f_t	$BF(M_vM_u)$	PMP
H ₁ H ₂ H ₃ H _{unc}	1/4	1	4	0.27
	1/2	1	2	0.13
	1/8	1	8	0.53
	1	1	1	0.07



COMPARISON BAYES FACTOR VS POSTERIOR PROBABILITY

- Consider H_1 : $\beta_M > 0$, $\beta_C > 0$ versus H_2 : "not H_1 ".
- Compare $Pr(H_1|data)$ with $Pr(\beta > 0|data)$.



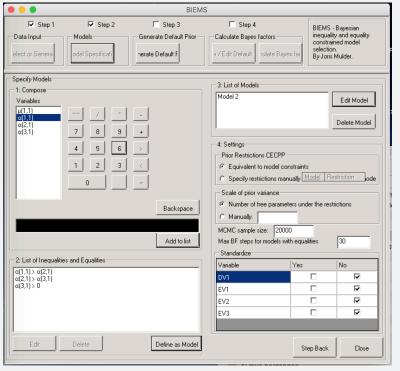


USEFUL PROPERTIES OF BAYES FACTORS

Bayes factors...

- ... have an intuitive interpretation as the **relative evidence in the data** between statistical hypotheses.
- ... can be used for testing multiple equality and order hypotheses.
- ... do not rely on large sample theory.
- ... do not rely on the sampling plan.
- ... are **consistent** in very general scenario's

- **BIEMS** (Mulder et al., 2012) for testing hypotheses with equality and order constraints in the (multivariate) t test, (multivariate) regression, (M)AN(C)OVA, repeated measures.
- BIEMS has a user-friendly interface.
- R-package in development.



- **BOCOR** (Mulder, 2016) and **BCT** (Mulder & Gelissen, in prep.) for testing equality and order constraints on bivariate correlations, partial correlations, polychoric correlations, etc.
- BOCOR and BCT are stand-alone executables.
- R-package in development.


```
BCT_input.txt ~
Input 1: model
                             #populations Ntotal
       #covs intercept
                                            1286
Which DVs are ordinal (0=continuous, 1=ordinal)
1 1 1
Input 2: hypotheses
#hypotheses
#equalities, #inequalities
0 2
Input 3: constraints in hypotheses
Equalities H1; Inequalities H1; Equalities H2; Inequalities H2; etc.
1 2 1 1 3 1
1 3 1 1 3 2
1 2 1 0 -1 0
1 3 2 0 1 0
Input 4: implementation details
iterations, iseed, delta
1000 123 .1
```

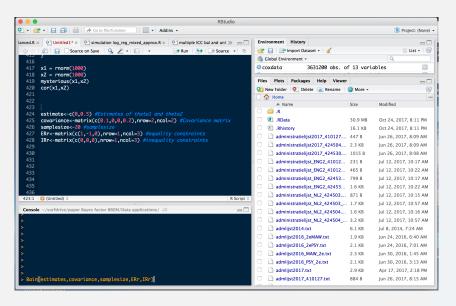
BOCOR/BCT!

• **Bain** (Gu et al., in press) for testing equality and order constraints on parameters for **general statistical models**.

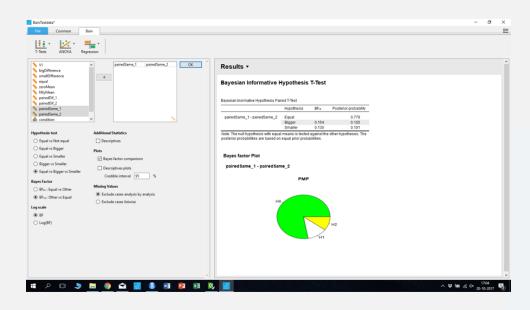
Baln uses an approximate Bayes procedure that only needs the ML estimates

and estimated covariance matrix.

 Baln is a R-package. It is currently being implemented in JASP (Wagenmakers and colleagues)



Bain in R!

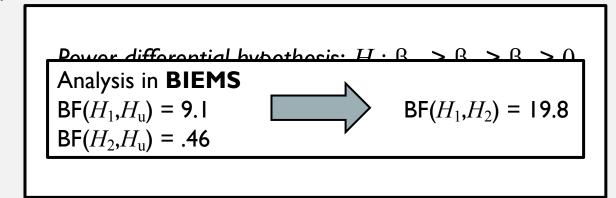


Bain in JASP!

- Other software packages include:
 - **BFvar** (Böing-Messing et al., 2017) for testing equality and order constraints on **group variances**.
 - **BF-ICC** (Mulder & Fox, under review) for testing constraints on **intraclass correlations**.
 - **BF-NAM** (Dittrich et al., in prep.) for testing constraints on **network autocorrelations**.
- Bayes factor testing not for order constraints:
 - BayesFactor R-packge (Morey & Rouder, 2015)
 - JASP (Wagenmakers and colleagues, 2016).
 - SPSS (latest version).

ORDER HYPOTHESES ON RELATIVE EFFECTS REVISITED

- We can combine these order constraints into a single 'order hypothesis'.
 - "All sources of workplace aggression have a positive effect on depression and the effect is largest for managers, followed by coworkers, followed by visitors"
 - Data: N = 864.



ORDER HYPOTHESES ON INTRACLASS CORRELATIONS REVISITED

- Null hypothesis:
- Order hypothesis:
- Complement hypothesis:

 H_0 : $\rho_{NL} = \rho_{CR} = \rho_{GER} = \rho_{DEN}$.

 $H_1: \rho_{NL} < \rho_{CR} < \rho_{GER} < \rho_{DEN}$.

 H_2 : neither H_0 , nor H_1 .

- Data: 100-150 schools per county; school classes of 15 students.
- Results:

Analysis in R (Mulder & Fox, under review)

 $BF(H_0, H_u) = .000$

 $BF(H_1,H_u) = 18.1$

 $BF(H_2,H_u) = .261$

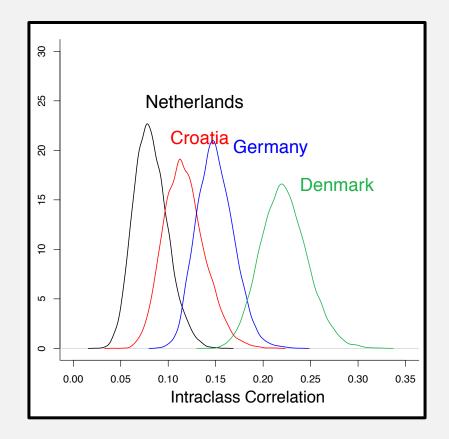
 $P(H_0|Data) = .000$

 $P(H_1|Data) = .986$

 $P(H_2|Data) = .014$

ORDER HYPOTHESES ON INTRACLASS CORRELATIONS REVISITED

 Posteriors under unconstrained model



ORDER HYPOTHESES IN DYNAMIC SOCIAL NETWORKS REVISITED

• It is often suggested that information-sharing occurs sooner and at a higher rate among colleagues who they feel related to – this is often attributed to identity.

•
$$H_1: \beta_{position} > \beta_{building} > \beta_{gender} > 0$$

•
$$H_2$$
: $\beta_{position} > \beta_{building} = \beta_{gender} = 0$

• H_3 : neither H_1 , nor H_2 .

$$P(H_1|Data) = .06$$

$$P(H_2|Data) = .94$$

$$P(H_3|Data) = .00$$

ORDER HYPOTHESES IN DYNAMIC SOCIAL NETWORKS REVISITED

- It is often suggested that information-sharing occurs sooner and at a higher rate among colleagues who they feel related to - this is often attributed to identity.
- Data: 1505 emails among 51 colleagues.

•
$$H_1: \beta_{position} > \beta_{building} > \beta_{gender} > 0$$

•
$$H_2$$
: $\beta_{position} > \beta_{building} = \beta_{gender} = 0$

• H_3 : neither H_1 , nor H_2 .

$$P(H_1|Data) = .06$$

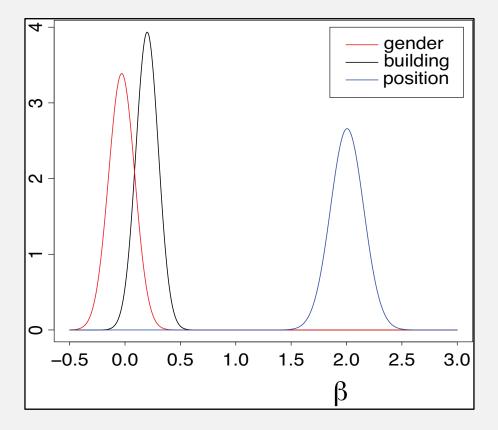
 $P(H_2|Data) = .94$
 $P(H_3|Data) = .00$.

$$P(H_2|Data) = .94$$

$$P(H_3|Data) = .00.$$

ORDER HYPOTHESES IN DYNAMIC SOCIAL NETWORKS REVISITED

 Posteriors under unconstrained model



CONCLUSIONS

- The Bayes factor has many useful properties for testing statistical hypotheses such as
 - its **intuitive interpretation** as the statistical evidence between competing hypotheses;
 - the ability to test multiple hypotheses with equality and order constraints;
 - its **consistent** behavior or their invariance for the **sampling plan**.
- Software for computing Bayes factors is becoming more and more available for challenging testing problems.

THANK YOU!

j.mulder3@tilburguniversity.edu

