The Matrix-F Prior for Estimating and Testing Covariance Matrices

Joris Mulder & Luis R. Pericchi

Department of Methodology & Statistics Tilburg University, the Netherlands

CWI talk 2018, Amsterdam, 5-4-18

Outline

- Problems with inverse gamma priors
- 2 Introducing the univariate F and matrix-F prior
- \bigcirc The matrix-F prior in regularized regression
- \bigcirc The matrix-F prior for testing covariance matrices
 - Testing a precise hypothesis
 - Testing inequality constrained hypotheses
- \odot The matrix-F prior for modeling random effects covariance matrices
- Summary

Outline

- 1 Problems with inverse gamma priors
- 2 Introducing the univariate F and matrix-F prior
- The matrix-F prior in regularized regression
- The matrix-F prior for testing covariance matrices
 - Testing a precise hypothesis
 - Testing inequality constrained hypotheses
- 5 The matrix-F prior for modeling random effects covariance matrices
- 6 Summary

 The inverse gamma prior is the default choice for modeling variance components,

$$\sigma^2 \sim \mathcal{IG}(\alpha, \beta),$$

with prior shape parameter α and prior scale parameter β .

 The inverse gamma prior is the default choice for modeling variance components,

$$\sigma^2 \sim \mathcal{IG}(\alpha, \beta),$$

with prior shape parameter α and prior scale parameter β .

• The inverse gamma prior is conjugate for a variance of a normal population.

 The inverse gamma prior is the default choice for modeling variance components,

$$\sigma^2 \sim \mathcal{IG}(\alpha, \beta),$$

with prior shape parameter α and prior scale parameter β .

- The inverse gamma prior is conjugate for a variance of a normal population.
- Default choice: $\alpha = \beta = \epsilon > 0$, with ϵ small, e.g., .001.

 The inverse gamma prior is the default choice for modeling variance components,

$$\sigma^2 \sim \mathcal{IG}(\alpha, \beta),$$

with prior shape parameter α and prior scale parameter β .

- The inverse gamma prior is conjugate for a variance of a normal population.
- Default choice: $\alpha = \beta = \epsilon > 0$, with ϵ small, e.g., .001.
- The inverse gamma prior is a proper neighboring prior of the popular Jeffreys prior σ^{-2} . Let

$$p^{N}(\sigma^{2}|\mathbf{x}) \propto \sigma^{-2}f(\mathbf{x}|\sigma^{2})$$

 $p(\sigma^{2}|\mathbf{x}) \propto \mathcal{IG}(\sigma^{2};\epsilon,\epsilon)f(\mathbf{x}|\sigma^{2}),$

then

$$p(\sigma^2|\mathbf{x}) \to p^N(\sigma^2|\mathbf{x})$$
, as $\epsilon \to 0$.

Problems with the inverse gamma prior

 Surprisingly, the inverse gamma can unduly be highly informative as a prior for the random effects variance in a hierarchical model,

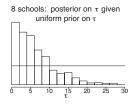
```
i-th observation in group j: y_{ij} \sim \mathcal{N}(\mu_j, \sigma^2) random mean of group j: \mu_j \sim \mathcal{N}(\mu, \tau^2).
```

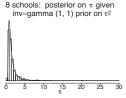
Problems with the inverse gamma prior

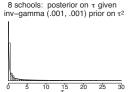
 Surprisingly, the inverse gamma can unduly be highly informative as a prior for the random effects variance in a hierarchical model,

i-th observation in group
$$j$$
: $y_{ij} \sim \mathcal{N}(\mu_j, \sigma^2)$ random mean of group j : $\mu_j \sim \mathcal{N}(\mu, \tau^2)$.

• The 8 schools example of Gelman (2006) showed the effect of the inverse gamma prior on τ^2 :







Outline

- Problems with inverse gamma priors
- 2 Introducing the univariate F and matrix-F prior
- The matrix-F prior in regularized regression
- The matrix-F prior for testing covariance matrices
 - Testing a precise hypothesis
 - Testing inequality constrained hypotheses
- 5 The matrix-F prior for modeling random effects covariance matrices
- Summary

 The issue of the inverse gamma prior can be resolved by mixing the scale parameter with a gamma distribution. This results in a univariate F prior:

$$\mathcal{F}(\sigma^2; \nu, \delta, b) = \int \mathcal{IG}(\sigma^2; \frac{\delta}{2}, \psi^2) \times \mathcal{G}(\psi^2; \frac{\nu}{2}, b^{-1}) d\psi^2,$$

with degrees of freedom parameters ν and δ , and scale parameter b.

 The issue of the inverse gamma prior can be resolved by mixing the scale parameter with a gamma distribution. This results in a univariate F prior:

$$\mathcal{F}(\sigma^2; \nu, \delta, b) = \int \mathcal{IG}(\sigma^2; \frac{\delta}{2}, \psi^2) \times \mathcal{G}(\psi^2; \frac{\nu}{2}, b^{-1}) d\psi^2,$$

with degrees of freedom parameters ν and δ , and scale parameter b.

- Mixing a hyperparameter with another distribution is a way to robustify a prior.
 - Example: The Student t prior is known to be more robust than a normal prior for regression analysis.
 - The Student *t* prior is obtained by mixing the variance of a normal prior:

$$t(eta;\mu,\gamma,
u) = \int \mathcal{N}(eta;\mu,\sigma^2) \mathcal{I} \mathcal{G}(\sigma^2;rac{
u}{2},rac{\gamma}{2}) d\sigma^2.$$

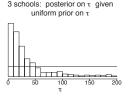
• Setting $\nu = 1$, the standard deviation has a half-t distribution:

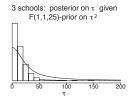
$$p(\sigma|\nu=1,\delta,b) = \frac{2\Gamma(\frac{\delta+1}{2})}{\Gamma(\frac{\delta}{2})\sqrt{b\pi}} \left(1 + \frac{\sigma^2}{b}\right)^{\frac{\delta+1}{2}}.$$

• Setting $\nu = 1$, the standard deviation has a half-t distribution:

$$p(\sigma|\nu=1,\delta,b) = \frac{2\Gamma(\frac{\delta+1}{2})}{\Gamma(\frac{\delta}{2})\sqrt{b\pi}} \left(1 + \frac{\sigma^2}{b}\right)^{\frac{\delta+1}{2}}.$$

• The F prior results in more desirable behavior than the inverse gamma prior for school data (Gelman, 2006).





• In a multivariate setting, the **inverse Wishart prior** is the default choice for a $k \times k$ covariance matrix.

- In a multivariate setting, the **inverse Wishart prior** is the default choice for a $k \times k$ covariance matrix.
- The inverse Wishart prior is a matrix generalization of the inverse gamma prior, and thus has similar issues.

- In a multivariate setting, the inverse Wishart prior is the default choice for a k × k covariance matrix.
- The inverse Wishart prior is a matrix generalization of the inverse gamma prior, and thus has similar issues.
- We propose to robustify the inverse Wishart by mixing the scale matrix with a Wishart distribution:

$$\mathcal{F}(\mathbf{\Sigma};
u, \delta, \mathbf{S}) = \int \mathcal{IW}(\mathbf{\Sigma}; \delta + k - 1, \mathbf{\Psi}) imes \mathcal{W}(\mathbf{\Psi};
u, \mathbf{B}) d\mathbf{\Psi},$$

where ν controls the behavior near the origin of $|\Sigma|$, δ controls the behavior in the tails of $|\Sigma|$, and **B** is a scale matrix.

- In a multivariate setting, the inverse Wishart prior is the default choice for a k × k covariance matrix.
- The inverse Wishart prior is a matrix generalization of the inverse gamma prior, and thus has similar issues.
- We propose to robustify the inverse Wishart by mixing the scale matrix with a Wishart distribution:

$$\mathcal{F}(\mathbf{\Sigma};
u, \delta, \mathbf{S}) = \int \mathcal{IW}(\mathbf{\Sigma}; \delta + k - 1, \mathbf{\Psi}) imes \mathcal{W}(\mathbf{\Psi};
u, \mathbf{B}) d\mathbf{\Psi},$$

where ν controls the behavior near the origin of $|\Sigma|$, δ controls the behavior in the tails of $|\Sigma|$, and **B** is a scale matrix.

• Setting $\mathbf{S} = \mathbf{I}_k$ yields the standard matrix-F distribution (Dawid, 1981).

Reciprocity:

$$oldsymbol{\Sigma} \sim \mathcal{F}(
u, \delta, \mathbf{S}) \Rightarrow oldsymbol{\Sigma}^{-1} \sim \mathcal{F}(\delta + k - 1,
u - k + 1, \mathbf{S}^{-1})$$

Reciprocity:

$$oldsymbol{\Sigma} \sim \mathcal{F}(
u, \delta, \mathbf{S}) \Rightarrow oldsymbol{\Sigma}^{-1} \sim \mathcal{F}(\delta + k - 1,
u - k + 1, \mathbf{S}^{-1})$$

Invariant under marginalization:

$$oldsymbol{\Sigma} \sim \mathcal{F}(
u, \delta, \mathbf{S}) \Rightarrow oldsymbol{\Sigma}_{11} \sim \mathcal{F}(
u, \delta, \mathbf{S}_{11})$$

Reciprocity:

$$\Sigma \sim \mathcal{F}(\nu, \delta, \mathbf{S}) \Rightarrow \Sigma^{-1} \sim \mathcal{F}(\delta + k - 1, \nu - k + 1, \mathbf{S}^{-1})$$

Invariant under marginalization:

$$oldsymbol{\Sigma} \sim \mathcal{F}(
u, \delta, \mathbf{S}) \Rightarrow oldsymbol{\Sigma}_{11} \sim \mathcal{F}(
u, \delta, \mathbf{S}_{11})$$

• Implementation in Gibbs sampler:

The matrix-F prior can easily be implemented in a Gibbs sampler using a parameter expansion:

$$oldsymbol{\Sigma} \sim \mathcal{F}(
u, \delta, \mathbf{S}) \Leftrightarrow \left\{egin{array}{l} oldsymbol{\Sigma} \sim \mathcal{IW}(oldsymbol{\Sigma}; \delta + k - 1, oldsymbol{\Psi}) \ oldsymbol{\Psi} \sim \mathcal{W}(oldsymbol{\Psi};
u, oldsymbol{\mathsf{B}}) \end{array}
ight.$$

Then

$$\Psi | \mathbf{\Sigma} \sim \mathcal{W}(\nu + \delta + k - 1, (\mathbf{B}^{-1} + \mathbf{\Sigma}^{-1})^{-1}).$$

• Implementation in R:

```
    In R, draw Σ having an inverse Wishart prior:
    Sigma <- solve(rwish(v=n+k,S=solve(SS + B0))</li>
```

• In R, draw Σ having a matrix-F prior:
SigmaInv <- rwish(v=nu+k,S=solve(SS + Psi)
Psi <- rwish(v=nu+delta+k-1,S=solve(SigmaInv+B0Inv))</pre>

Implementation in R:

```
    In R, draw Σ having an inverse Wishart prior:
    Sigma <- solve(rwish(v=n+k,S=solve(SS + B0))</li>
```

In R, draw Σ having a matrix-F prior:
 SigmaInv <- rwish(v=nu+k,S=solve(SS + Psi)
 Psi <- rwish(v=nu+delta+k-1,S=solve(SigmaInv+B0Inv))

Setting hyperparameters

A minimally informative default prior can be obtained by setting $\nu=k,~\delta=1$, and **B** equal to a "prior guess", or use an empirical Bayes prior scale (Kass & Natarajan, 2008).

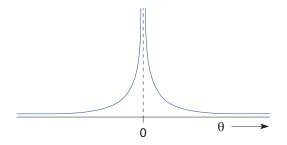
Outline

- Problems with inverse gamma priors
- Introducing the univariate F and matrix-F prior
- \bigcirc The matrix-F prior in regularized regression
- The matrix-F prior for testing covariance matrices
 - Testing a precise hypothesis
 - Testing inequality constrained hypotheses
- 5 The matrix-F prior for modeling random effects covariance matrices
- Summary

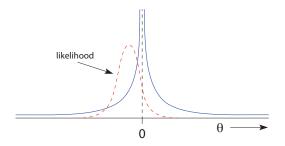
• A common problem in regression analysis is detecting true large effects in the case of many predictors $(p \gg n)$.

- A common problem in regression analysis is detecting true large effects in the case of many predictors $(p \gg n)$.
- The lasso estimate is a popular solution for this problem.

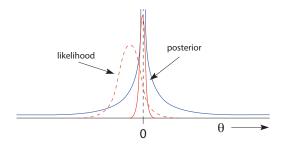
- A common problem in regression analysis is detecting true large effects in the case of many predictors $(p \gg n)$.
- The lasso estimate is a popular solution for this problem.
- A proper horseshoe prior for Bayesian regularized regression performs better in certain scenario's (Carvalho et al., 2010).



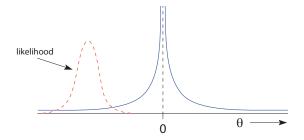
- A common problem in regression analysis is detecting true large effects in the case of many predictors $(p \gg n)$.
- The lasso estimate is a popular solution for this problem.
- A proper horseshoe prior for Bayesian regularized regression performs better in certain scenario's (Carvalho et al., 2010).



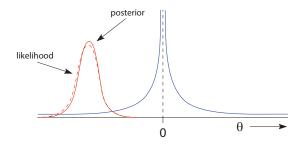
- A common problem in regression analysis is detecting true large effects in the case of many predictors $(p \gg n)$.
- The lasso estimate is a popular solution for this problem.
- A proper horseshoe prior for Bayesian regularized regression performs better in certain scenario's (Carvalho et al., 2010).



- A common problem in regression analysis is detecting true large effects in the case of many predictors $(p \gg n)$.
- The lasso estimate is a popular solution for this problem.
- A proper horseshoe prior for Bayesian regularized regression performs better in certain scenario's (Carvalho et al., 2010).



- A common problem in regression analysis is detecting true large effects in the case of many predictors $(p \gg n)$.
- The lasso estimate is a popular solution for this problem.
- A proper horseshoe prior for Bayesian regularized regression performs better in certain scenario's (Carvalho et al., 2010).



 When predictors are grouped, e.g., when using several dummy variables to model a categorical predictor, it may be preferable to either select all predictors belonging to a certain group or none.

- When predictors are grouped, e.g., when using several dummy variables to model a categorical predictor, it may be preferable to either select all predictors belonging to a certain group or none.
- The **grouped-lasso** is a popular solution for such grouped predictors.

- When predictors are grouped, e.g., when using several dummy variables to model a categorical predictor, it may be preferable to either select all predictors belonging to a certain group or none.
- The grouped-lasso is a popular solution for such grouped predictors.
- A horse-shoe type prior can be constructed using the matrix-F distribution resulting in similar selection beheavior:

$$p(\theta) = \int \mathcal{N}(\theta; \mathbf{0}, \mathbf{\Sigma}) \times \mathcal{F}(\mathbf{\Sigma}; k, 1, \mathbf{B}) d\mathbf{\Sigma}$$

- When predictors are grouped, e.g., when using several dummy variables to model a categorical predictor, it may be preferable to either select all predictors belonging to a certain group or none.
- The grouped-lasso is a popular solution for such grouped predictors.
- A horse-shoe type prior can be constructed using the matrix-F distribution resulting in similar selection beheavior:

$$p(\theta) = \int \mathcal{N}(\theta; \mathbf{0}, \mathbf{\Sigma}) \times \mathcal{F}(\mathbf{\Sigma}; k, 1, \mathbf{B}) d\mathbf{\Sigma}$$

• Thicker tails than a Cauchy distribution:

$$p(\theta) = \int \mathcal{C}(\theta; \mathbf{0}, \mathbf{\Psi}) \times \mathcal{W}(\mathbf{\Psi}; k, \mathbf{B}) d\mathbf{\Psi}$$

- When predictors are grouped, e.g., when using several dummy variables to model a categorical predictor, it may be preferable to either select all predictors belonging to a certain group or none.
- The grouped-lasso is a popular solution for such grouped predictors.
- A horse-shoe type prior can be constructed using the matrix-F distribution resulting in similar selection beheavior:

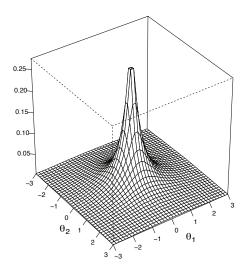
$$p(\theta) = \int \mathcal{N}(\theta; \mathbf{0}, \mathbf{\Sigma}) \times \mathcal{F}(\mathbf{\Sigma}; k, 1, \mathbf{B}) d\mathbf{\Sigma}$$

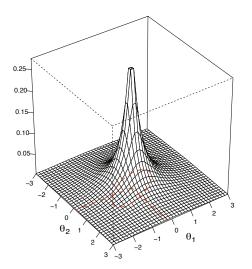
• Thicker tails than a Cauchy distribution:

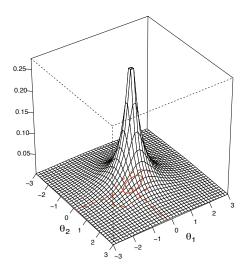
$$p(\boldsymbol{\theta}) = \int \mathcal{C}(\boldsymbol{\theta}; \mathbf{0}, \boldsymbol{\Psi}) \times \mathcal{W}(\boldsymbol{\Psi}; k, \mathbf{B}) d\boldsymbol{\Psi}$$

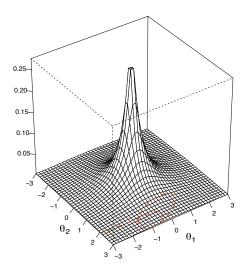
• Pole at $\theta = \mathbf{0}$ because

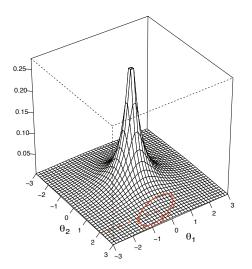
$$p(\theta) \to +\infty$$
 as $\theta \to \mathbf{0}$.











Outline

- Problems with inverse gamma priors
- Introducing the univariate F and matrix-F prior
- The matrix-F prior in regularized regression
- Φ The matrix-F prior for testing covariance matrices
 - Testing a precise hypothesis
 - Testing inequality constrained hypotheses
- 5 The matrix-F prior for modeling random effects covariance matrices
- Summary

Consider the following hypothesis test of a covariance matrix:

$$H_0: \Sigma = \Sigma_0 \text{ vs } H_1: \Sigma \neq \Sigma_0,$$

when considering multivariate normal data, $\mathbf{x}_i \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Consider the following hypothesis test of a covariance matrix:

$$H_0: \Sigma = \Sigma_0 \text{ vs } H_1: \Sigma \neq \Sigma_0,$$

when considering multivariate normal data, $\mathbf{x}_i \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

 Bayesian hypothesis tests can be conducted using the marginal likelihood:

$$m_0(\mathbf{X}) = \int p(\mathbf{X}|\mu, \Sigma_0) p_0(\mu) d\mu$$

 $m_1(\mathbf{X}) = \int p(\mathbf{X}|\mu, \Sigma) p_1(\mu, \Sigma) d\mu d\Sigma.$

The test is performed using the Bayes factor: $B_{01} = \frac{m_0(\mathbf{X})}{m_1(\mathbf{X})}$.

←□▶ ←□▶ ←□▶ ←□▶ ○■ のQで

Consider the following hypothesis test of a covariance matrix:

$$H_0: \Sigma = \Sigma_0 \text{ vs } H_1: \Sigma \neq \Sigma_0,$$

when considering multivariate normal data, $\mathbf{x}_i \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

 Bayesian hypothesis tests can be conducted using the marginal likelihood:

$$m_0(\mathbf{X}) = \int p(\mathbf{X}|\mu, \Sigma_0) p_0(\mu) d\mu$$

 $m_1(\mathbf{X}) = \int p(\mathbf{X}|\mu, \Sigma) p_1(\mu, \Sigma) d\mu d\Sigma.$

The test is performed using the Bayes factor: $B_{01} = \frac{m_0(\mathbf{X})}{m_1(\mathbf{X})}$.

• **Problem**: How to choose the priors p_0 and p_1 ?

4D>4A>4E>4E> 4A>

 Default Bayes factors, such as the intrinsic Bayes factor (Berger & Pericchi, 1996) or the fractional Bayes factor (O'Hagan, 1995), avoid the choice of a prior by updating a noninformative improper prior with a minimal subset of the data to obtain a posterior prior, and the remaining subset of the data is used for hypothesis testing.

- Default Bayes factors, such as the intrinsic Bayes factor (Berger & Pericchi, 1996) or the fractional Bayes factor (O'Hagan, 1995), avoid the choice of a prior by updating a noninformative improper prior with a minimal subset of the data to obtain a posterior prior, and the remaining subset of the data is used for hypothesis testing.
- In certain situations, such default Bayes factors behave as actual Bayes factors based on so-called intrinsic priors as $n \to \infty$.

- Default Bayes factors, such as the intrinsic Bayes factor (Berger & Pericchi, 1996) or the fractional Bayes factor (O'Hagan, 1995), avoid the choice of a prior by updating a noninformative improper prior with a minimal subset of the data to obtain a posterior prior, and the remaining subset of the data is used for hypothesis testing.
- In certain situations, such default Bayes factors behave as actual Bayes factors based on so-called intrinsic priors as $n \to \infty$.
- A proper intrinsic prior can be used to compute an "objective"
 Bayes factor without needing to formulate a subjective prior or
 without needing to split the data for prior specification and
 hypothesis testing.

• An intrinsic prior can be found via (Berger & Pericchi, 2004)

$$ho_1^{N}(\mu, \Sigma | \mathbf{X}_{(\ell)})$$

27 / 44

• An intrinsic prior can be found via (Berger & Pericchi, 2004)

$$ho_1^{N}(\mu, \Sigma | \mathbf{X}_{(\ell)})
ho_0^{N}(\mathbf{X}_{(\ell)})$$

An intrinsic prior can be found via (Berger & Pericchi, 2004)

$$ho_1^I(oldsymbol{\mu}, oldsymbol{\Sigma}) = \int
ho_1^N(oldsymbol{\mu}, oldsymbol{\Sigma} | \mathbf{X}_{(oldsymbol{\ell})})
ho_0^N(\mathbf{X}_{(oldsymbol{\ell})}) d\mathbf{X}_{(oldsymbol{\ell})}$$

An intrinsic prior can be found via (Berger & Pericchi, 2004)

$$ho_1^I(oldsymbol{\mu}, \Sigma) = \int
ho_1^N(oldsymbol{\mu}, \Sigma | \mathbf{X}_{(\ell)})
ho_0^N(\mathbf{X}_{(\ell)}) d\mathbf{X}_{(\ell)},$$

where

$$egin{array}{lll} egin{array}{lll} eta_0^N(\mathbf{X}_{(\ell)}) &=& \int
ho(\mathbf{X}_{(\ell)}|oldsymbol{\mu}, \Sigma_0)
ho_0^N(oldsymbol{\mu}) doldsymbol{\mu} \ & & & rac{
ho(\mathbf{X}_{(\ell)}|oldsymbol{\mu}, \Sigma)
ho_1^N(oldsymbol{\mu}, \Sigma) }{\int
ho(\mathbf{X}_{(\ell)}|oldsymbol{\mu}, \Sigma)
ho_1^N(oldsymbol{\mu}, \Sigma) doldsymbol{\mu} d\Sigma} \end{array}$$

30 / 44

Theorem

When testing $H_0: \Sigma = \Sigma_0$ versus $H_1: \Sigma \neq \Sigma_0$ using iid k-variate data with $\mathbf{x}_i \sim \mathcal{N}(\mu, \Sigma)$, for $i = 1, \ldots, n$, the intrinsic prior under H_1 is given by

$$\pi_1^I(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = F(\boldsymbol{\Sigma}; k, 1, \boldsymbol{\Sigma}_0)$$

based on the noninformative improper priors $\pi_1^N(\mu, \Sigma) = |\Sigma|^{-\frac{k+1}{2}}$ and $\pi_0^N(\mu) = 1$, and a minimal training sample of size m = k+1. This is also the case when μ is known.

Proposition

The Bayes factor of $H_0: \Sigma = \Sigma_0$ versus $H_1: \Sigma \neq \Sigma_0$ based on the intrinsic prior is consistent.

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Consider the following hypothesis test of a covariance matrix:

$$H_1: \sigma_1 < \ldots < \sigma_k \text{ vs } H_2: \sigma_1 > \ldots > \sigma_k \text{ vs } H_3: \text{ neither } H_1, \text{ nor } H_2,$$
 when considering multivariate normal data, $\mathbf{x}_i \sim \mathcal{N}(\mu, \Sigma)$.

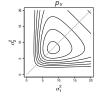
• Consider the following hypothesis test of a covariance matrix:

$$H_1:\sigma_1<\ldots<\sigma_k$$
 vs $H_2:\sigma_1>\ldots>\sigma_k$ vs $H_3:$ neither $H_1,$ nor $H_2,$

when considering multivariate normal data, $\mathbf{x}_i \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

• Let H_u : " Σ is pos. def.", and

$$p_2(\Sigma) = p_u(\Sigma) \times I(\sigma_1 > \ldots > \sigma_k) \times Pr(\sigma_1 > \ldots > \sigma_k | H_u)^{-1}$$



→□→ →□→ → □→ □ → ○○○

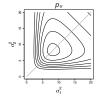
Consider the following hypothesis test of a covariance matrix:

$$H_1:\sigma_1<\ldots<\sigma_k$$
 vs $H_2:\sigma_1>\ldots>\sigma_k$ vs $H_3:$ neither $H_1,$ nor $H_2,$

when considering multivariate normal data, $\mathbf{x}_i \sim \mathcal{N}(\mu, \mathbf{\Sigma})$.

• Let H_u : " Σ is pos. def.", and

$$p_2(\Sigma) = p_u(\Sigma) \times I(\sigma_1 > \ldots > \sigma_k) \times Pr(\sigma_1 > \ldots > \sigma_k | H_u)^{-1}$$



• The Bayes factor is given by: $B_{2u} = \frac{Pr(\sigma_1 > ... > \sigma_k | H_u, \mathbf{X})}{Pr(\sigma_1 > ... > \sigma_k | H_u)}$.

4D> 4A> 4B> 4B> B 990

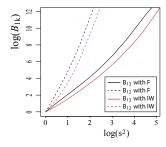
• $H_1: \sigma_1 < \ldots < \sigma_k$ vs $H_2: \sigma_1 > \ldots > \sigma_k$ vs $H_3:$ neither H_1 , nor H_2 .

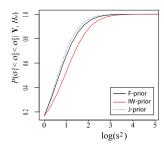
- $H_1: \sigma_1 < \ldots < \sigma_k$ vs $H_2: \sigma_1 > \ldots > \sigma_k$ vs $H_3:$ neither H_1 , nor H_2 .
- As unconstrained priors we considered

 - $2 \Sigma \sim \mathcal{IW}(3, \mathbf{I}_3).$

33 / 44

- $H_1: \sigma_1 < \ldots < \sigma_k$ vs $H_2: \sigma_1 > \ldots > \sigma_k$ vs $H_3:$ neither H_1 , nor H_2 .
- As unconstrained priors we considered
- We fixed n = 20 and let $\mathbf{S} = diag(1, s, s^2)$, while $s \to \infty$.





Outline

- Problems with inverse gamma priors
- 2 Introducing the univariate F and matrix-F prior
- The matrix-F prior in regularized regression
- The matrix-F prior for testing covariance matrices
 - Testing a precise hypothesis
 - Testing inequality constrained hypotheses
- The matrix-F prior for modeling random effects covariance matrices
- 6 Summary

 Kass and Natarajan (2006) considered the following hierarchical Poisson regression model:

$$y_i|b_i, x_i \sim Poisson(\mu_i^{x,b})$$

$$\mu_I^{x,b} = \exp\{\beta_0 + \beta_1 \log(x_i + 10) + \beta_2 x_i + b_i\}$$

$$b_i \sim N(0, \sigma^2),$$

for i = 1, ..., 18.

 Kass and Natarajan (2006) considered the following hierarchical Poisson regression model:

$$y_i|b_i, x_i \sim Poisson(\mu_i^{x,b})$$

$$\mu_I^{x,b} = \exp\{\beta_0 + \beta_1 \log(x_i + 10) + \beta_2 x_i + b_i\}$$

$$b_i \sim N(0, \sigma^2),$$

for i = 1, ..., 18.

• Population values: $\beta_0 = 2.203$, $\beta_1 = .311$, $\beta_2 = -.001$, and $\sigma^2 = .04$.

 Kass and Natarajan (2006) considered the following hierarchical Poisson regression model:

$$y_i|b_i, x_i \sim Poisson(\mu_i^{x,b})$$

$$\mu_I^{x,b} = \exp\{\beta_0 + \beta_1 \log(x_i + 10) + \beta_2 x_i + b_i\}$$

$$b_i \sim N(0, \sigma^2),$$

for
$$i = 1, ..., 18$$
.

- Population values: $\beta_0 = 2.203, \ \beta_1 = .311, \ \beta_2 = -.001, \ \text{and} \ \sigma^2 = .04.$
- Classical risk and nonconvergence of the 95%-Cl's were determined.

Hierarchical Poisson regression model

	$IW(1,R^*)$	$\pi_{\it us}$	$F(1, 1, R^*)$	$F(1,1,10^3)$	$(\sigma^2)^{-\frac{1}{2}}$
Risk					
$oldsymbol{eta}$	$.01\pm.00$	$.01\pm.00$	$.11\pm.00$	$.10\pm.00$	$.11\pm.00$
σ^2	$.12\pm.00$	$.62 \pm .02$	$.23\pm.01$	$.28\pm.01$	$.27\pm.01$
Noncoverage					
β_0	$\textbf{.056} \pm \textbf{.007}$	$.070\pm.008$	$\textbf{.064} \pm \textbf{.007}$	$.047\pm.007$	$\textbf{.048} \pm \textbf{.008}$
β_1	$\textbf{.059} \pm \textbf{.007}$	$\textbf{.067} \pm \textbf{.008}$	$\textbf{.065} \pm \textbf{.007}$	$\textbf{.048} \pm \textbf{.007}$	$.049\pm.007$
$\frac{\beta_2}{\sigma^2}$	$\textbf{.060} \pm \textbf{.007}$	$.075\pm.008$	$\textbf{.053} \pm \textbf{.007}$	$\textbf{.058} \pm \textbf{.007}$	$.051\pm.007$
σ^2	$\textbf{.007} \pm \textbf{.003}$	$.037\pm.006$	$.048\pm.007$	$.050\pm.007$	$.045\pm.007$

- $IW(1, R^*)$ is the default (empirical Bayes) conjugate prior of Kass & Natarajan (2006);
- π_{us} is the approximate uniform shrinkage prior of Natarajan & Kass (1999).

• Natarajan and Kass (1999) considered the following hierarchical logistic regression model:

$$logit(\mu_{ij}^{\mathbf{b}}) = \beta_0 + \beta_1 t_j + \beta_2 x_i + \beta_3 x_i t_j + b_{i0} + b_{i1} t_j$$

$$\mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}),$$

for
$$n = 30$$
, $t_j = j - 4$, for $j = 1, ..., 7$.

• Natarajan and Kass (1999) considered the following hierarchical logistic regression model:

$$\begin{aligned}
\log \text{logit}(\mu_{ij}^{\mathbf{b}}) &= \beta_0 + \beta_1 t_j + \beta_2 x_i + \beta_3 x_i t_j + b_{i0} + b_{i1} t_j \\
\mathbf{b}_i &\sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}),
\end{aligned}$$

for
$$n = 30$$
, $t_j = j - 4$, for $j = 1, \dots, 7$.

• Population values: $\beta = (-.625, .25, -.25, .125)'$ and $\Sigma = {\rm diag}(.5, .25).$

• Natarajan and Kass (1999) considered the following hierarchical logistic regression model:

$$\begin{aligned} \mathsf{logit}(\mu^{\mathbf{b}}_{ij}) &= \beta_0 + \beta_1 t_j + \beta_2 x_i + \beta_3 x_i t_j + b_{i0} + b_{i1} t_j \\ \mathbf{b}_i &\sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}), \end{aligned}$$

for
$$n = 30$$
, $t_j = j - 4$, for $j = 1, ..., 7$.

- Population values: $\beta = (-.625, .25, -.25, .125)'$ and $\Sigma = {\rm diag}(.5, .25).$
- Classical risk and nonconvergence of the 95%-Cl's were determined.

Hierarchical logistic regression model

Results for the random effects covariance matrix Σ .

		Noncoverage			Ir	Interval width			
Prior	Risk	σ_1^2	σ_{12}	σ_2^2	σ_1^2	σ_{12}	σ_2^2		
$F(\Sigma; 2, 2, \mathbf{R}^*)$	$3.32\pm.18$.034	.045	.043	2.11	1.07	.90		
$\pi_{\it us}$	$3.10\pm.19$.035	.029	.041	2.12	1.05	.88		
HW-prior	$7.64\pm.50$.070	.009	.110	2.89	1.08	1.28		

- π_{us} is the approximate uniform shrinkage prior of Natarajan & Kass (1999).
- The HW-prior is the marginally noninformative prior of Huang and Wand (2013).

Hierarchical logistic regression model

Results for the fixed effects β .

		Noncoverage			Interval width				
Prior	Risk	β_0	β_1	β_2	β_3	β_0	β_1	β_2	β_3
$F(\Sigma; 2, 2, \mathbf{R}^*)$	$.44\pm.01$.052	.048	.055	.045	1.33	.81	1.89	1.15
π_{us}	$.46\pm.02$.033	.058	.044	.045	1.44	.83	2.12	1.19
HW-prior	$.51\pm.02$.061	.046	.055	.044	1.45	.91	2.05	1.28

- π_{us} is the approximate uniform shrinkage prior of Natarajan & Kass (1999).
- The HW-prior is the marginally noninformative prior of Huang and Wand (2013).

Hierarchical logistic regression model

Results for the random effects \mathbf{b}_i .

	Risk		Nonco	Noncoverage		Interval width	
Prior	b_0	b_1	$\overline{b_0}$	b_1	$\overline{b_0}$	b_1	
$F(\Sigma; 2, 2, \mathbf{R}^*)$	$11.65\pm.13$	$4.67\pm.05$.058	.057	2.54	1.60	
$\pi_{\it us}$	$11.51\pm.12$	$4.51\pm.05$.045	.048	2.67	1.63	
HW-prior	$12.46\pm.17$	$5.20\pm.08$.049	.046	2.80	1.77	

- π_{us} is the approximate uniform shrinkage prior of Natarajan & Kass (1999).
- The HW-prior is the marginally noninformative prior of Huang and Wand (2013).

Outline

- Problems with inverse gamma priors
- 2 Introducing the univariate F and matrix-F prior
- The matrix-F prior in regularized regression
- The matrix-F prior for testing covariance matrices
 - Testing a precise hypothesis
 - Testing inequality constrained hypotheses
- 5 The matrix-F prior for modeling random effects covariance matrices
- Summary

Summary

- The F distribution can "safely" be used as prior for the random effects covariance matrix.
- The matrix-F prior is competitive in terms of risk and coverage rates in generalized linear mixed models.
- The matrix-F prior can straightforwardly be implemented in a Gibbs sampler.
- A minimally informative matrix-F prior can easily be specified based on a prior guess or empirical Bayes scale matrix.
- The matrix-F prior can be used for constructing multivariate horseshoe type priors for estimating sparse signals.
- The matrix-F prior serves as an intrinsic prior when testing a covariance matrix of multivariate normal data.
- The matrix-F prior results in satisfactory selection behavior for testing inequality constrained hypotheses.

References

- Berger, J. O. & Pericchi, L. R. (2004). Training samples in objective Bayesian model selection. The Annals of Statistics, 32, 841–869.
- Carvalho, C. M., Polson, N. G., and Scott, J. G. (2010). The horseshoe estimator for sparse signals. *Biometrika*, 97, 465–480.
- Dawid, A. P. (1981). Some matrix-variate distribution theory: Notational considerations and a Bayesian application. *Biometrika*, 68, 265–274.
- Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models(Comment on Article by Browne and Draper). Bayesian Analysis, 3, 515–534.
- Mulder, J. & Pericchi, L.R. (in press). The matrix-variate F prior for estimating and testing covariance matrices. Bayesian Analysis.

43 / 44

Thank you!

44 / 44